top of page

Levy C Curve

The Basic Formula

 

The Levy C Curve and Dragon Curve are variations on the same idea. You start with a line and essentially “fold” that line in a repetitive way to achieve the final pattern. More mathematically speaking, you replace each existing line segment with two lines that would form a 45-45-90 triangle with the existing line segment, as shown below.

levyCiterations2.png
levi1.png
levyCiterations.png

After that first iteration, you should have two lines (as depicted above). You then repeat the process, folding each of those two lines into two more lines. You continue on in this fashion until you have achieved the desired level of resolution.

You repeat this pattern of “folding” the line and the resulting fractal is called the Levy C curve. Below, you can see the first 11 iterations of the fractal!

The Basic Code (and how to use it)

 

You may have noticed the the phrase preceding the image at the beginning of this section: Folding_Curve(16,0,[-1,1],[-1,1],[0]). This demonstrates how to call the Matlab function that will generate the image of the Levy C Curve. The function name is "Folding_Curve," and the items in the parentheses are the inputs to that function. The image here describes what the various inputs do. You can follow the link below to the function itself. To run the code, simply put the function in your working directory for Matlab. Then, you can copy the function call into the main Matlab interface. Note that you cannot run a function by itself; you must call it from another script.

FoldingcurveCode.png

function Folding_Curve(iterations,makeVideo,xlimVals,ylimVals,pattern)
% This function draws a Dragon Curve (or a variant of that curve) with the
% following inputs:
%   iterations = int; number of iterations 
%   makeVideo = 1 or 0; set to 1 to make a video
%   xlimVals = [xmin,xmax]; set the x-boundaries for the graph
%   ylimVlas = [ymin,ymax]; set the y-boundaries for the graph
%   pattern = pattern of 1's and 0's. For each 0, the pattern will turn
%   right. For each 1 the pattern will turn left. When the pattern reaches
%   the end, it will repeat. For example, [0,1] will generate the standard
%   dragon curve

    % If making a video, initialize the video object
    if makeVideo==1
        writerObj = VideoWriter('foldingCurveVideo.mp4','MPEG-4'); 
        writerObj.FrameRate = 1;
        writerObj.Quality=100;
        open(writerObj)
    end
    angle=45;
    pts=[-.5,0;.5,0];
    len=1;
    
    % Initialize the figure
    fig1=figure('Position',[50,50,900,900],'Color',[1 1 1]);
    c=[1/size(pts,1) 0 1-1/size(pts,1)];
    
    % Draw the initial line
    plot([-0.5 0.5],[0 0],'Color',c,'LineWidth',.75)
    hold on
    xlim(xlimVals);
    ylim(ylimVals);
    axis off
    
    % If making a video, grab a frame
    if makeVideo==1
        frame = getframe(1);
        writeVideo(writerObj, frame) 
        pause(1)
    end
    
    % Repeat for the given number of iterations
    for i=1:iterations
        disp(i)
        cla
        len=0.5*len/cosd(angle);
        temp=[];
        dir=1;
        
        % Repeast for each line segment in the curve
        for j=1:size(pts,1)-1
            
            % Grab the two endpoints of the curve
            pt1=pts(j,:);
            pt2=pts(j+1,:);
            
            % Subtract one endpoint from the other so you're centered on
            % zero and can more easily calculate the angle
            pt2corr=pt2-pt1;
           if 0>=pt2corr(1) && 0>=pt2corr(2)
                theta=atand(abs(pt2corr(2)/pt2corr(1)))+180;
           elseif 0>=pt2corr(1)
                theta=180-atand(abs(pt2corr(2)/pt2corr(1)));
           elseif 0>=pt2corr(2)
                theta=360-atand(abs(pt2corr(2)/pt2corr(1)));
           else
                theta=atand(abs(pt2corr(2)/pt2corr(1)));
           end

           % Determine the new point (the 'midpoint') for your line segment
            if pattern(dir)==0 % If turning RIGHT
                midpt=[len*cosd(theta-angle)+pt1(1),len*sind(theta-angle)+pt1(2)];
            else % If turning LEFT
                midpt=[len*cosd(theta+angle)+pt1(1),len*sind(theta+angle)+pt1(2)];
            end
            
            % Determine the color based on the current iteration
            c=[j/size(pts,1) 0 1-j/size(pts,1)];
            
            % Plot the new line segments
            plot([pt1(1),midpt(1),pt2(1)],[pt1(2),midpt(2),pt2(2)],'Color',c,'LineWidth',.75)
            hold on
            xlim(xlimVals);
            ylim(ylimVals);
            axis off
            
            % Add the new points to the temp variable
            temp=[temp;pt1;midpt];
            
            % Change direction based on the pattern
            if dir==length(pattern)
                dir=1;
            else
                dir=dir+1;
            end
        end
        temp=[temp;pts(end,:)];
        pts=temp;
        
        % If making a video, grab a frame
        if makeVideo==1
            frame = getframe(1);
            writeVideo(writerObj, frame) 
        end
        pause(1)   
    end
    
    % If making a video, grab a few frames of the final video and close the
    % video object
    if makeVideo==1
        for i=1:5
            frame = getframe(1);
            writeVideo(writerObj, frame) 
        end
        close(writerObj)
    end
end

Tiling Code

 

In addition to making the base Levy C curve, you can also make interesting patterns by tiling the curve. Let's say we start with 4 lines instead of 1, and they all form Levy C curves. What if the lines are arranged in a square? What if two of the sides fold in the opposite direction (i.e. always fold left instead of always folding right)? What I've done in the function Folding_Curve_4lines is provide you the opportunity to explore these possibilities.

FoldingcurveCode2.png

The one major difference with this function is that it has a "shape" input. This basically just defines how the four lines are arranged. If shape = 1, you start with a square. When the Levy C curves develop, you'll note that two adjacent sides will fold IN and two other sides will fold OUT. If shape = 2, you also start with a square. But in this case two opposite sides will fold IN and the other two will fold OUT. If shape = 3, you start with a square but the lines are separated by some distance. All the lines will fold IN. If shape = 4, you start with a square but the lines all fold the same direction: IN.

Note that changing the pattern from [1] to [0] will simply reverse the orientation of the curves. Essentially, it tells the curves to turn RIGHT always instead of LEFT always.

function Folding_Curve_4lines(iterations,makeVideo,xlimVals,ylimVals,pattern,shape,filename)
% This function draws a Dragon Curve (or a variant of that curve) with the
% following inputs:
%   iterations = int; number of iterations 
%   makeVideo = 1 or 0; set to 1 to make a video
%   xlimVals = [xmin,xmax]; set the x-boundaries for the graph
%   ylimVlas = [ymin,ymax]; set the y-boundaries for the graph
%   pattern = pattern of 1's and 0's. For each 0, the pattern will turn
%   right. For each 1 the pattern will turn left. When the pattern reaches
%   the end, it will repeat. For example, [0,1] will generate the standard
%   dragon curve
%   shape = 1,2,3,or 4 
%       1 -> square where two adjacent sides fold in, the others fold out
%       2 -> square where two opposite sides fold in, the others fold out
%       3 -> 4 lines that are separated by some distance
%       4 -> square where all sides fold in
%   filename = name of file if creating a video


    % If making a video, initialize the video object
    if makeVideo==1
        writerObj = VideoWriter([filename,'.mp4'],'MPEG-4'); % Name it.
        writerObj.FrameRate = 1;
        writerObj.Quality=100;
        open(writerObj)
    end
    angle=45;
    
    if shape==1
        pts=[-1,1;1,1];
        pts2=[-1,-1;1,-1];
        pts3=[-1,-1;-1,1];
        pts4=[1,-1;1,1];
    elseif shape==2
        pts=[1,1;-1,1];
        pts2=[-1,-1;1,-1];
        pts3=[-1,-1;-1,1];
        pts4=[1,1;1,-1];
    elseif shape==3
        pts=[1,3;-1,3];
        pts2=[-1,-3;1,-3];
        pts3=[3,-1;3,1];
        pts4=[-3,1;-3,-1];    
    elseif shape==4
        pts=[1,1;-1,1];
        pts2=[-1,-1;1,-1];
        pts3=[1,-1;1,1];
        pts4=[-1,1;-1,-1];         
    end
    len=2;
    
    % Initialize the figure
    fig1=figure('Position',[50,50,900,900],'Color',[1 1 1]);
    c4=[0,0,0];
    
    % Draw the initial lines
    plot(pts(:,1),pts(:,2),'Color',c4,'LineWidth',.75)
    hold on
    plot(pts2(:,1),pts2(:,2),'Color',c4,'LineWidth',.75)
    plot(pts3(:,1),pts3(:,2),'Color',c4,'LineWidth',.75)
    plot(pts4(:,1),pts4(:,2),'Color',c4,'LineWidth',.75)
    xlim(xlimVals);
    ylim(ylimVals);
    axis off
    pause(1)
    
    % If making a video, grab a frame
    if makeVideo==1
        frame = getframe(1);
        writeVideo(writerObj, frame) 
        pause(1)
    end
 
    % Repeat for the given number of iterations
    for i=1:iterations
        disp(i)
        cla
        len=0.5*len/cosd(angle);

        temp=[];
        temp2=[];
        temp3=[];
        temp4=[];
        dir=1;

        
        % Repeast for each line segment in the curve
        for j=1:size(pts,1)-1
            
            % Determine the color
            c=[j/size(pts,1) 0 1-j/size(pts,1)];
            c2=[1-j/size(pts,1) 0 j/size(pts,1)];
           
            % Grab the two endpoints of the curve
            pt1=pts(j,:);
            pt2=pts(j+1,:);
            pt12=pts2(j,:);
            pt22=pts2(j+1,:);
            pt13=pts3(j,:);
            pt23=pts3(j+1,:);
            pt14=pts4(j,:);
            pt24=pts4(j+1,:);        
            
            % Subtract one endpoint from the other so you're centered on
            % zero and can more easily calculate the angle
            pt2corr=pt2-pt1;
            
            % Calculate the new angle
           if 0>=pt2corr(1) && 0>=pt2corr(2)
                theta=atand(abs(pt2corr(2)/pt2corr(1)))+180;
           elseif 0>=pt2corr(1)
                theta=180-atand(abs(pt2corr(2)/pt2corr(1)));
           elseif 0>=pt2corr(2)
                theta=360-atand(abs(pt2corr(2)/pt2corr(1)));
           else
                theta=atand(abs(pt2corr(2)/pt2corr(1)));
           end

           pt2corr2=pt22-pt12;
           if 0>=pt2corr2(1) && 0>=pt2corr2(2)
                theta2=atand(abs(pt2corr2(2)/pt2corr2(1)))+180;
           elseif 0>=pt2corr2(1)
                theta2=180-atand(abs(pt2corr2(2)/pt2corr2(1)));
           elseif 0>=pt2corr2(2)
                theta2=360-atand(abs(pt2corr2(2)/pt2corr2(1)));
           else
                theta2=atand(abs(pt2corr2(2)/pt2corr2(1)));
           end
           
            pt2corr3=pt23-pt13;
           if 0>=pt2corr3(1) && 0>=pt2corr3(2)
                theta3=atand(abs(pt2corr3(2)/pt2corr3(1)))+180;
           elseif 0>=pt2corr3(1)
                theta3=180-atand(abs(pt2corr3(2)/pt2corr3(1)));
           elseif 0>=pt2corr3(2)
                theta3=360-atand(abs(pt2corr3(2)/pt2corr3(1)));
           else
                theta3=atand(abs(pt2corr3(2)/pt2corr3(1)));
           end
           
            pt2corr4=pt24-pt14;
           if 0>=pt2corr4(1) && 0>=pt2corr4(2)
                theta4=atand(abs(pt2corr4(2)/pt2corr4(1)))+180;
           elseif 0>=pt2corr4(1)
                theta4=180-atand(abs(pt2corr4(2)/pt2corr4(1)));
           elseif 0>=pt2corr4(2)
                theta4=360-atand(abs(pt2corr4(2)/pt2corr4(1)));
           else
                theta4=atand(abs(pt2corr4(2)/pt2corr4(1)));
           end
           
           % Determine the new point (the 'midpoint') for your line segment           
            if pattern(dir)==0 % If turning RIGHT
                midpt=[len*cosd(theta-angle)+pt1(1),len*sind(theta-angle)+pt1(2)];
            else % If turning LEFT
                midpt=[len*cosd(theta+angle)+pt1(1),len*sind(theta+angle)+pt1(2)];
            end

            if pattern(dir)==0 % If turning RIGHT
                midpt2=[len*cosd(theta2-angle)+pt12(1),len*sind(theta2-angle)+pt12(2)];
            else % If turning LEFT
                midpt2=[len*cosd(theta2+angle)+pt12(1),len*sind(theta2+angle)+pt12(2)];
            end
            
            if pattern(dir)==0 % If turning RIGHT
                midpt3=[len*cosd(theta3-angle)+pt13(1),len*sind(theta3-angle)+pt13(2)];
            else % If turning LEFT
                midpt3=[len*cosd(theta3+angle)+pt13(1),len*sind(theta3+angle)+pt13(2)];
            end
            
            if pattern(dir)==0 % If turning RIGHT
                midpt4=[len*cosd(theta4-angle)+pt14(1),len*sind(theta4-angle)+pt14(2)];
            else % If turning LEFT
                midpt4=[len*cosd(theta4+angle)+pt14(1),len*sind(theta4+angle)+pt14(2)];
            end            
            % Determine the color based on the current iteration
            %c=[j/size(pts,1) 0 1-j/size(pts,1)];
            
            % Plot the new line segments
            plot([pt1(1),midpt(1),pt2(1)],[pt1(2),midpt(2),pt2(2)],'Color',c,'LineWidth',.75)
            hold on
            plot([pt12(1),midpt2(1),pt22(1)],[pt12(2),midpt2(2),pt22(2)],'Color',c,'LineWidth',.75)
            plot([pt13(1),midpt3(1),pt23(1)],[pt13(2),midpt3(2),pt23(2)],'Color',c2,'LineWidth',.75)
            plot([pt14(1),midpt4(1),pt24(1)],[pt14(2),midpt4(2),pt24(2)],'Color',c2,'LineWidth',.75)
            
            xlim(xlimVals);
            ylim(ylimVals);
            axis off
            
            % Add the new points to the temp variable
            temp=[temp;pt1;midpt];
            temp2=[temp2;pt12;midpt2];
            temp3=[temp3;pt13;midpt3];
            temp4=[temp4;pt14;midpt4];
            
            % Change direction based on the pattern
            if dir==length(pattern)
                dir=1;
            else
                dir=dir+1;
            end
        end
        
        temp=[temp;pts(end,:)];
        pts=temp;
        temp2=[temp2;pts2(end,:)];
        pts2=temp2;
        temp3=[temp3;pts3(end,:)];
        pts3=temp3;
        temp4=[temp4;pts4(end,:)];
        pts4=temp4;   
        
        % If making a video, grab a frame
        if makeVideo==1
            frame = getframe(1);
            writeVideo(writerObj, frame) 
        end
        pause(1)   
    end
    
    % If making a video, grab a few frames of the final video and close the
    % video object
    if makeVideo==1
        for i=1:5
            frame = getframe(1);
            writeVideo(writerObj, frame) 
        end
        close(writerObj)
    end
    
    % Save the final iteration as an image
    saveas(fig1,[filename,'.png']);
end

Tiling Examples

 

Here you will find use cases of the Folding_Curve_4lines function!

Folding_Curve_4lines(14,0,[-3.5,3.5],[-3.5,3.5],[1],4,'filename1')

  

Folding_Curve_4lines(14,0,[-3.5,3.5],[-3.5,3.5],[1],1,'filename1')

carpet.png
levyC_tile1.png

 

Folding_Curve_4lines(14,0,[-3.5,3.5],[-3.5,3.5],[1],3,'filename1')               Folding_Curve_4lines(14,0,[-3.5,3.5],[-3.5,3.5],[0],2,'filename1')

levyC_tile2.png
levyC_tile3.png

© 2022 by Dr. Bricault. Proudly created with Wix.com

bottom of page